
Computing Mark Xerri

JAVA Notes 4 – Conditional Statements

Java, like all other programming languages, is equipped with specific statements that allow us to check a

condition and execute certain parts of code depending on whether the condition is true or false. Such

statements are called conditional, and are a form of composite statement.

In Java, there are two forms of conditional statements:

• the if-else statement, to choose between two alternatives.

• the switch statement, to choose between multiple alternatives.

The if-else statement

Syntax: if (condition) statement1;

else stetment2;

Example: if (Mark >= 50) System.out.println(“You PASSED!”);

else System.out.println(“You Failed!”);

Compound statements

In the if we can use a single statement or more than one statement known as compound statement

(block of statements). Compound statements are enclosed in curly brackets {}

Syntax: if (condition) {

 Stament1;

Statement2;

…

}

Example: if (Mark >= 50) {

 System.out.println(“You PASSED!”);

pass = pass + 1;

}

Computing Mark Xerri

Logical and Comparison Operators

Note: The operators in red are not included in the syllabus.

Nested ifs

This means you have an if in an if – the inner ifs are executed if the first if is true i.e. in 4 example below

Distinction, Merit, Pass or Fail are only displayed if the mark is from 0 to 100.

Syntax: if (condition1) {

 if (condition2) statement1;

if (condition3) statement2;

…

}

Example: if (mark>=0 && mark<=100){

if (mark>=90) System.out.println(“Distinction”);
if (mark>=75 && mark<90) System.out.println(“Merit”);
if (mark>=50 && mark<75) System.out.println(“Pass”);
else if (mark<50)System.out.println("Fail");

}
else System.out.println(“Invalid mark”);

Computing Mark Xerri

switch

This is a multiway branch statement i.e. easy way to send execution to different parts of the program.
Used instead of using many if-else-if statements

Syntax: switch (expression) {
 case value1: statement; break;

case value2: statement; break;
…
case valueN: stamen; break;
default: statement; break;

 }

• When one of the cases is found true it will be executed and goes out of the switch.

• If none of the cases are found to be true then the default will be executed.

• If no default is present (it is optional) then no action is taken.

• The break statement is optional but if there’s no break the program will continue to check the
next cases.

• Sometimes it is useful to omit the break since you would need to continue checking the other
cases – as seen in example 2 below.

• Can be used instead of if-else-if

• When you have many cases the if is better

Important features of the switch statement:

• The switch works only with: byte, char, int

• The switch can only be used for equality and NOT the other comparison operations as the if

